CONTENTS

	FOR	REWORD	iii		
	PREFACE				
	USE	CR COMMENT FORM	vii		
	GLO	DSSARY	xv		
1.	INT	RODUCTION	1		
	1.1	Background	1		
	1.2	Development of This Handbook	2		
	1.3	Purpose of This Handbook	2		
		Scope and Limitations	3		
	1.5	Organization of This Handbook	3		
2.	SEI	SMIC VULNERABILITY OF BUILDINGS	5		
		Introduction	5		
	2.1	General Attributes of Structures	5		
		2.1.1 Strength	5		
		2.1.2 Stiffness	5		
		2.1.3 Ductility	6		
		2.1.4 Damping	6		
	2,2	Adverse Design and Construction Features	6		
		2.2.1 Lack of Direct Load Path	6		
		2.2.2 Irregularities	7		
		2.2.3 Lack of Redundancy	13		
		2.2.4 Lack of Toughness	13		
		2.2.5 Adjacent Buildings	14		
	2.3	Deteriorated Condition of Structural Materials	14		
3.	SEI	SMIC STRENGTHENING OF EXISTING BUILDINGS	17		
	3.0	Introduction	17		
		3.0.1 Cost Considerations	17		
		3.0.2 Functional Considerations	17		
		3.0.3 Aesthetic Considerations	18		
		3.0.4 Seismic Zonation	18		
	3.1	5 ,	18		
		3.1.1 Steel Moment Frames	18		
		3.1.2 Concrete Moment Frames	22		
•		3.1.3 Moment Frames with Infills	26		
		3.1.4 Precast Concrete Moment Frames	28		
	3.2	Vertical-resisting ElementsShear Walls	28		
		3.2.1 Reinforced Concrete or Reinforced Masonry Shear Walls	28		
		3.2.2 Precast Concrete Shear Walls	34		
		3.2.3 Unreinforced Masonry Shear Walls 3.2.4 Shear Walls in Wood Frame Buildings	34 37		
		5/4 SOPET WEIGH WINN PLEMP BUILDING	4.1		

	3.3	Vertical	l-resisting ElementsBraced Frames				38
			Steel Concentric Braced Frames				38
			Rod or Other Tension Bracing				41
			Eccentric Bracing				42
	3.4		l-resisting ElementsAdding Supplemental Members				43
	3.4		Relative Compatibility				44
			Exterior Supplemental Elements		a di s		45
			Interior Supplemental Elements				45
	3.5						46
	3.5		Timber Diaphragms				47
			Concrete Diaphragms				51
			Poured Gypsum Diaphragms				56
			Precast Concrete Diaphragms				56
			Steel Deck Diaphragms				59
4			Horizontal Steel Bracing				64
	36	Foundat					65
	5.0		Continuous or Strip Wall Footings				66
			Individual Pier or Column Footings				68
			Piles or Drilled Piers				70
			Mat Foundations				72
	3.7		ngm to Vertical Element Connections				72
	3.1		Connections of Timber Diaphragms				72
			Connections of Concrete Diaphragms				84
			Connections of Poured Gypsum Diaphragms				86
			Connections of Precast Concrete Diaphragms				86
		3.7.5	Connections of Steel Deck Diaphragms Without Concrete Fill				87
			Connections of Steel Deck Diaphragms with Concrete Fill				89
			Connections of Horizontal Steel Bracing				90
	3.8		Element to Foundation Connections				91
	3.0		Connections of Wood Stud Shear Walls				91
			Connections of Metal Stud Shear Walls				95
			Connections of Precast Concrete Shear Walls	÷			95
			Connections of Braced Frames				97
			Connections of Steel Moment Frames				98
	20		a New Supplemental System				98
	3.9		Supplemental Braced Frame System				99
			New Shear Wall System				99
			Structural Additions			1	101
		3.7.3	Structurar Additions			•	
4.	DEC	CREASIN	IG DEMAND ON EXISTING SYSTEMS			1	103
	4.0	Introduc	rtion			1	103
			g the Weight of the Building				103
			ng the Fundamental Period and the Energy Dissipating Capacity			_	
	7.2		tructural System			1	104
	12		re Procedures			_	105
	4.3		Seismic Isolation				105
							105
	,	4.3.2	Supplemental Damping				105
5.	REF	HABILITA	ATION OF NONSTRUCTURAL ARCHITECTURAL COMPONENTS	ı		1	107
	5.0	Introduc	ction				107
	5.1 Exterior Curtain Walls						107
	5.2	Appenda	ages				108
		Veneers				1	109

		Partitions	103
	5.5	Ceilings	113
	5.6	Lighting Fixtures	113
	5.7	Glass Doors and Windows	114
	5.8	Raised Computer Access Floors	115
6.	REF	HABILITATION OF NONSTRUCTURAL MECHANICAL AND ELECTRICAL COMPONENTS	S 117
٠.			
		Introduction	117
	6.1	Mechanical and Electrical Equipment	117
		Ductwork and Piping	126
		Elevators	133
		Emergency Power Systems	133
		Hazardous Material Storage Systems	135
		Communication Systems	137
	6.7	Computer Equipment	137
RI	BLIO	GRAPHY	143
AF	PENI	DICES	
Α	Sei	smic-Force-Resisting Elements in Buildings	149
В	Sur	nmary of Strengthening Techniques	165
C	Re	habilitation Examples	185
M	INOR	ITY OPINION	193
141.	AL TOX		
BS	SSC B	OARD OF DIRECTION AND MEMBER ORGANIZATIONS	195
FI	GURI	ES	
LE	EGEN	ID FOR FIGURES: (E) = Existing, (L) = Left, (N) = New, (R) = Right	
	2.2.1	Vertical irregularitiesexamples of in-plane and out-of-plane discontinuities	8
		Horizontal and plan irregularitiesrehabilitating a structure to reduce torsional loads	10
		Horizontal and plan irregularitiesexamples of rehabilitating buildings with re-entrant corners	11
		Horizontal and plan irregularitiesexample of strengthening a split level diaphragm	12
2.2	2.2.4d	Horizontal and plan irregularitiesexample of rehabilitating building with nonparallel systems	12
		Modification of an existing simple beam to a moment connection	19
		Strengthening an existing column	20
		Strengthening an existing beam	21
		Encasing an existing beam in concrete	23
		Strengthening an existing concrete column	24-25
		Strengthening an existing concrete frame building with a reinforced concrete shear wall	26
3.2	2.1.2a	Strengthening an existing shear wall by filling in existing openings	29
		Example of details for enclosing an existing opening in a reinforced concrete or masonry wall	30
3.2	2.1.2c	Strengthening an existing reinforced concrete or masonry wall	31
3.2	2.1.4	Example of strengthening an existing coupling beam at an exterior wall	32
	2.3.2	Example of center coring technique	35
3.3	3	Bracing types	38
3.:	3.1.2	Addition to or replacement of an existing X-brace	39
3.4	4	Examples of supplementary strengthening	44
3.	4.2	Example of supplemental in-plane strengthening by the addition of an external buttress	45
3.4	4.3	Connection of a supplemental interior shear wall	46

3.5.1.3	Exterior sheathing and top plate chord in a wood frame building	4
3.5.1.4a	Reinforcement of an opening in an existing timber diaphragm	. 5
3.5.1.4b	New drag strut in an existing wood diaphragm	5
3.5.2.2	Strengthening an existing concrete diaphragm with a new topping slab and chord	5
3.5.2.3	Adding a new chord member to an existing concrete diaphragm (not recommended	
	for precast elements)	5
3.5.2.4a	Reinforcement of an opening in an existing concrete diaphragm	5
3.5.2.4b	Strengthening openings in overlaid diaphragms	5
3.5.4.2	Strengthening an existing precast concrete diaphragm with a concrete overlay	5
3.5.4.3	Adding a new steel member to an existing precast concrete diaphragm	5
3.5.5.2a	Strengthening an existing steel deck diaphragm	6
3.5.5.2b	Strengthening an existing steel deck diaphragm	6
3.5.5.2c	Strengthening an existing building with steel decking and concrete or masonry walls	6
3.5.5.2d		6
3.6.1.2a	Underpinning an existing footing	6
	Strengthening an existing wall footing by the addition of drilled piers	6
3.6.2.3	Upgrading an existing pile foundation	7.
	Strengthening the connection of a diaphragm to an interior shear wall	
	(wall parallel to floor joist)	7:
3.7.1.2b	Strengthening the connection of a diaphragm to an interior shear wall	
	(wall perpendicular to floor joist)	74
3.7.1.3	Strengthening an existing wood stud shear wall with a large opening	· 70
	Strengthening out-of-plane connections of a wood diaphragm	7'
	Strengthening out-of-plane connections of a wood diaphragm	78
	Strengthening out-of-plane connections of a wood diaphragm	79
3.7.1.4d		80
3.7.1.4e	Strengthening tensile capacity of an existing glulam beam connection	80
	Strengthening the connection between shear walls using a metal strap	8:
3.7.1.5b	Strengthening the connection between shear walls using a hold-down	83
3.7.1.5c	Strengthening shear wall uplift capacity at a discontinuity	83
3.7.2.2	Use of a collector member to improve shear transfer from a concrete diaphragm	8:
3.7.5.2	Strengthening the connection of steel deck diaphragm to a concrete or masonry wall	8
3.8.1.2a	Providing wall to foundation anchors	92
3.8.1.2b	Alternate detail for providing wall to foundation anchors	9:
3.8.1.3	Strengthening a cripple stud wall	94
3.8.1.4	Strengthening the uplift capacity of a wall to foundation connection	9:
3.8.3.2	Strengthening a precast concrete wall to foundation connection	90
3.9.1	Strengthening using a supplemental braced frame system	. 9
3.9.2	Strengthening by providing a new shear wall system	100
3.9.3	Strengthening with a new building addition	10:
5.1a	Flexible connection for precast concrete cladding	10
5.1b	Detail for flexible connection for precast concrete cladding	108
5.2a	Strengthening a masonry parapet with a new concrete overlay	109
5.2b	Strengthening a masonry parapet with steel braces	109
5.4a	Bracing an interior masonry partition	11:
5.4b	Bracing an interior masonry partition	112
5.5	Lateral bracing of a suspended ceiling	113
5.6	Providing safety wires for suspended lighting fixtures	114
5.8a	Access floor pedestals	11:
5.8b	Strengthening of access floor pedestals	110

6.1a	Typical detail of equipment anchorage	118
6.1b	Alternate details for anchoring equipment	119-120
6.1c	Prefabricated vibration isolation assembly with lateral seismic stops	121
6.1d	Seismic restraints added to existing equipment with vibration isolation	122
6.1e	Multidirectional seismic restraint	123
6.1f	Typical bracing for suspended equipment	124
6.1g	Strapping of domestic water heater	125
6.2a	Lateral and longitudinal braces for large diameter ducting	127
6.2b	Lateral and longitudinal braces for small diameter ducting	128
6.2c	Lateral and longitudinal braces for rectangular ducting	129
6.2d	Lateral braces for piping	130
6.2e	Longitudinal pipe brace	131
6.2f	Lateral brace for multiple pipes	132
6.2g	Longitudinal brace for multiple pipes	132
6.4a	Bracing of existing battery racks	133
6.4b	Bracing of horizontal tank	134
6.5a	Protective measures for hazardous materials	135
6.5b	Anchorage detail for pressurized tanks	136
6.7a	Rigid anchorage of computer equipment	138
6.7b	Flexible anchorage of computer equipment	139
6.7c	Tether and opening guards for protection of computer equipment	140
6.7d	Strapping of electronic data processing units	141